Positronic[®]

THE SCIENCE OF CERTAINTY

Efficiency considerations in Power Connectors for Space-Flight applications

WHAT DEFINES THE EFFICIENCY OF AN ELECTRICAL CONNECTOR?

Range of resistance values of electrical contacts

contact size	Spec Values Typical mΩ	Low mΩ	Ultra-Low mΩ
22	5	3	1.5
20	5	3	1
16	3	1.6	0.7
12	2	1	0.4
8	1	0.6	0.35

Power loss at contact interface = I² R a direct function of contact resistance

What technical elements could be optimized in order to obtain an ULTRA-LOW Resistance electrical contact?

1 Utilize high conductivity materials

2 Increase the electrical contact surface area

3 Optimize the force between the areas in contact

1 Utilize high conductivity materials

International Annealed Copper Standard

THE SCIENCE

OF CERTAINTY

Material by Copper Alloy number	Conductivity (%IACS)	Description
pure Copper C10400, C10500	100.0	pure copper in various conditions generally not used for contact manufacturing
C14300	96.00	high copper content alloy generally not used for contact manufacturing
C14700-O61	95.00	high copper content alloy generally not used for contact manufacturing
<u>C14***</u>	93.00	high copper content alloy possible to use for contacts manufacturing with difficult machinability
1.25% Phos. Bronze	48.00	commonly used in manufacturing Mil/EN3155 grade female contacts
Bronze-commercial leaded	42.00	commonly used in manufacturing Mil/EN3155 grade female contacts
Brass	18.00 to 37.00	commonly used in manufacturing Mil/EN3155 grade male contacts
Beryllium Copper	17.00 to 21.00	very commonly used in manufacturing stamped and formed contacts

2 Increase the electrical contact surface area

PosiBand = External Pressure Element FULLY SEPARATES MECHANICAL ACTION FROM ELECTRICAL ACTION

Wipe line is longer than the inner perimeter of the female contact face

3 Optimize the force between the areas in contact

PosiBand = External Pressure Element FULLY SEPARATES MECHANICAL ACTION FROM ELECTRICAL ACTION

Optimized interface normal force

Comparing efficiency impact between: typical, low and ultra-low, interface resistance on size 12 power contacts

contact size	Typical mΩ	Low mΩ	Ultra-Low mΩ
22	5	3	1.5
20	5	3	1
16	3	1.6	0.7
12	2	1	0.4
8	1	0.6	0.35

Power loss at contact interface $= I^2 R$

_ 1770W TOTAL SYSTEM LOADS - EQUIVALENT CIRCUIT DIAGRAM:

POWER LOSS COMPARISON TABLE:

CIRCUIT	Rf	Rt	Circuit Current	Instant P loss	Nr. of circuits	POWER LOSS	
5V	2mΩ	4mΩ	30A	3.6W	3	10.8W	Spec/Max
3.3V	1mΩ	2mΩ	60A	7.2W	3	21.6W	allowable
12V	2mΩ	4mΩ	30A	3.6W	2	7.2W	resistance
		TOTAL	INSTANT	POWE	R LOSS	39.6W	
5V	1mΩ	2mΩ	30A	1.8W	3	5.4W	Low
3.3V	0.5mΩ	1mΩ	60A	3.6W	3	10.8W	contact
12V	1mΩ	2mΩ	30A	1.8W	2	3.6W	resistance
TOTAL INSTANT POWER LOSS					19.8W		
5V	0.4mΩ	0.8mΩ	30A	0.72W	3	2.16W	Ultra-low
3.3V	0.2mΩ	0.4mΩ	60A	1.44W	3	4.32W	contact
12V	0.4mΩ	0.8mΩ	30A	0.72W	2	1.44W	resistance
TOTAL INSTANT POWER LOSS					7.92W		

POWER LOSS IN TIME:

CIRCUIT	DURATION OF TIME FOR 1kWhr LOSS	LOSS IN 1 MONTH OPERATION	LOSS IN 1 YEAR OPERATION	LOSS IN LIFETIME OPERATION (avg 6.5 yrs)
Typical R	25	28.5	347	2.3
CONTACTS	hours	kWhrs	kWhrs	MWhrs
LOW R	50	14.2	173	1.1
CONTACTS	hours	kWhrs	kWhrs	Mwhrs
ULTRA-LOW R	126	5.7	69	448
CONTACTS	hours	kWhrs	kWhrs	kWhrs

The Power System set is the heaviest equipment component in any satellite!

Increasing efficiency in every single component allows proportional decrease of system ratings which results in reducing the overall weight of the system.

REMEMBER:

ULTRA-LOW RESISTANCE POWER CONTACTS HELP MAXIMIZE EFFICIENCY IN A POWER DISTRIBUTION SYSTEM

Zero Gravity. Zero Oxygen. Zero Margin of Error.

Positronic®

105

Aleceh

PSK 1311 0

PSK 1311 C

1-003119040

Same and

2222347

THE SCIENCE OF CERTAINTY

THANK YOU

When you're dangling 150 miles above the stratosphere, systems failure is not an option. At Positronic, we build high-rel power and signal connectors. But our true call is to provide certainty. Rock solid, mission-critical performance upon which you can bank life and limb, family and fortune. We consider it an honor. We consider it an inviolable trust.

Positronic[®]